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ABSTRACT

Global changes are severely affecting pollinator insect communities worldwide, resulting in repeated patterns of species
extirpations and extinctions. Whilst negative population trends within this functional group have understandably
received much attention in recent decades, another facet of global changes has been overshadowed: species undergoing
expansion. Here, we review the factors and traits that have allowed a fraction of the pollinating entomofauna to take
advantage of global environmental change. Sufficient mobility, high resistance to acute heat stress, and inherent adapta-
tion to warmer climates appear to be key traits that allow pollinators to persist and even expand in the face of climate
change. An overall flexibility in dietary and nesting requirements is common in expanding species, although niche spe-
cialization can also drive expansion under specific contexts. The numerous consequences of wild and domesticated pol-
linator expansions, including competition for resources, pathogen spread, and hybridization with native wildlife, are also
discussed. Overall, we show that the traits and factors involved in the success stories of expanding pollinators are mostly
species specific and context dependent, rendering generalizations of ‘winning traits’ complicated. This work illustrates
the increasing need to consider expansion and its numerous consequences as significant facets of global changes and
encourages efforts to monitor the impacts of expanding insect pollinators, particularly exotic species, on natural
ecosystems.
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I. INTRODUCTION

The development of human societies has profoundly
impacted global biogeochemical systems to such a degree
that the period of time in which we now live has been dubbed
the Anthropocene (Lewis &Maslin, 2018; Sage, 2020). From
the point of view of biodiversity, this epoch has been marked
by a global wave of species extinctions, population extirpa-
tions, and negative population trends leading to a significant
shift in ecosystem composition (Dirzo et al., 2014). Although
species declines have understandably received much atten-
tion, this has overshadowed another facet of global change:
species undergoing expansion. This latter phenomenon com-
prises either an increase in the total area of a species’ distri-
bution or a shift from its original distribution, implying
expansion into new territories along with the loss of part of
their historical range. In both cases, the resulting distribution
encompasses new locations with potential consequences for
native wildlife (Tomiolo & Ward, 2018).

Three main factors predominantly account for how a sub-
set of species undergo expansion (McGeoch &
Latombe, 2016). First, species can respond positively to suc-
cessful interventions in their habitats that were planned to
avoid their extinction (Willis et al., 2009; Neel et al., 2012).
Second, steadily increasing evidence shows that populations
and species can expand along at least one margin of their dis-
tribution range following global changes in temperature and
habitats (e.g. Hiddink, Burrows & Molinos, 2015). Third,
species can reach new localities and establish inside or out-
side their native range through human transport (Aizen
et al., 2020). While increases in relative abundance, range
shifts, and expansions of species as a result of global change
are often well documented, the traits of species that allow
them to expand and establish new and/or bigger populations
are less well understood. Key combinations of life-history
traits are known at least partly to explain such expansions
under global changes (Estrada et al., 2016; MacLean &
Beissinger, 2017). For example, taxa with a higher dispersal
ability are more likely to reach suitable habitats (Travis
et al., 2013) and undergo larger range shifts (Buckley &
Kingsolver, 2012). Consequently, larger body size, often pos-
itively correlated with dispersal ability, shows a high potential
to be associated with species demonstrating a geographical
range expansion (Lyons, Wagner & Dzikiewicz, 2010; but
see Angert et al., 2011). Niche generalism, specifically dietary
breadth and range of habitats used, can also affect the ability

of an organism to establish in new locations (Braschler &
Hill, 2007; Angert et al., 2011), and indeed these two traits
are often intercorrelated (Lurgi, L�opez & Montoya, 2012).
Other life-history traits such as a high fecundity, or early
and frequent reproduction can also favour the ability of a
species to colonize, establish viable populations, and persist
in areas beyond its historic distribution (Angert et al., 2011).
Although such traits may be important individually, they
can present contradictory effects and thus may be counterba-
lanced. For instance, organisms with larger body size tend to
have a lower reproduction rate, leading to antagonistic
effects on range expansion (Lurgi et al., 2012).
Given their high species diversity (>5.5 million species;

Stork, 2018) and considerable economic importance (almost
$60 billion a year in the USA; Losey & Vaughan, 2006),
insects represent excellent models to investigate the context-
dependent importance of such traits following ecological dis-
ruptions (Halsch et al., 2021). The ongoing shifts of global
entomofauna are variable in space, time and intensity at
the community, species and population levels, with impacts
on natural (e.g. emerging patterns of introgressive hybridiza-
tion, speciation and extinction) and anthropogenic
(e.g. spread of pest species and disease vectors, loss of ecosys-
tem services) biomes. In particular, the response of insect pol-
linators, mainly bees, butterflies, hoverflies, moths and
pollinating wasps, to global changes has garnered much
attention due to their role in facilitating the sexual reproduc-
tion of both wild plants and crops (Potts et al., 2010;
Ollerton, 2017). More than 80% of the world’s flowering
plants are dependent on insects for pollination (Ollerton,
Winfree & Tarrant, 2011), including �75% of all crops
(Vanbergen & The Insect Pollinators Initiative, 2013;
Kremen, 2018). Although pollinating insects are widely
reported to have experienced drastic population declines
(e.g. Settele et al., 2008; Goulson et al., 2015; Kerr
et al., 2015; Agrawal & Inamine, 2018; Wagner, 2020; Zat-
tara & Aizen, 2021), a non-negligible number of species are
increasing their abundance, shifting their original distribu-
tion area towards new territories, and consequently expand-
ing from their historical distribution ranges (e.g. Duchenne
et al., 2020).
In the current context of a global biodiversity crisis,

highlighting the factors and the traits that jointly allow a sub-
set of species to benefit from global changes is a fundamental
step towards better understanding and predicting the numer-
ous consequences of ongoing global changes. In this context,

Biological Reviews 96 (2021) 2755–2770 © 2021 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical
Society.

2756 Guillaume Ghisbain et al.



we aim to review the current understanding of the various
factors (Fig. 1) and traits (Table 1) associated with expansions
of pollinators. Finally, we discuss the impacts of such expan-
sions on native wildlife.

II. POLLINATORS BENEFITING FROM CLIMATE
CHANGE

(1) Global impact of climate change on pollinators

Both acute as well as gradual changes in temperature can
impact species distributions and population dynamics, and
a possible response to these pressures is a shift in distribution
across elevation and latitude towards regions that were
previously too cool prior to climate warming (Pecl
et al., 2017). Climatic conditions directly impact pollinator
population dynamics through the modulation of survival
(Crozier, 2004; Martinet et al., 2021a), development
(WallisDeVries & van Swaay, 2006; Vanderplanck
et al., 2019), fertility (Martinet et al., 2021b), and dispersal
(Parmesan et al., 1999; Hill, Hastings & Botsford, 2002).
Moreover, climate partly constrains pollinator distribution
based on their thermal requirements (e.g. thermal minima
and maxima) (Oyen et al., 2016; Ghisbain et al., 2020). Con-
sidering climatic variables independently from other
confounding variables is however understandably complex,
as climate also impacts pollinators indirectly through envi-
ronmental changes.

Importantly, climatic variation impacts plant–pollinator
interactions by altering the quality and the quantity of plant
resources (i.e. pollen and nectar; Carnell, Hulse &
Hughes, 2020) or mismatches in the spatio-temporal distri-
butions of mutualistic partners (Thomson, 2016; Gérard
et al., 2020b). Water stresses (e.g. droughts, floods) are exam-
ples of extreme events that are likely to increase in fre-
quency, duration and severity (Dai, 2013; EEA, 2017), and
which have numerous effects on plant–pollinator interac-
tions, including modifications in plant and flower size, inflo-
rescence number, floral longevity, and scent (Thomson,
2016; Lambrecht, Morrow & Hussey, 2017; Campbell,
Sosenski & Raguso, 2019; Kahl, Lenhard & Joshi, 2019;
Descamps, Quinet & Jacquemart, 2020). The food supply
for pollinator populations is expected to be altered as these
extreme phenomena increase (reviewed in Descamps
et al., 2020).

(2) Dealing with the heat or tracking the cold

Several empirical studies have shown strong correlations
between global warming (i.e. change in mean temperature)
and spatial shift in butterflies (e.g. Parmesan et al., 1999;
Breed et al., 2012; Au & Bonebrake, 2019), with more than
60% of studied butterfly species extending their distributions
northwards by 35–240 km during the 20th century
(Parmesan et al., 1999). Although �80% of butterfly species
included in a more recent study underwent southern range

declines, many species with southerly centred ranges showed
population growth and shifted their distributions northwards
(Breed et al., 2012). This phenomenon is well established in
countries like Great Britain, where several studies have
demonstrated a temperature-related shift towards north-
ern regions (e.g. Asher et al., 2001; Pateman et al., 2012).
Climate warming has also been proposed as a driving fac-
tor behind the colonization of subtropical areas by a
diverse array of butterfly and moth species (Chan
et al., 2011; Cheng et al., 2019). A key trait involved in these
range shifts is that a high proportion of these newcomers
are of tropical origin that follow the increasing suitability
of subtropical areas for tropical species (Au &
Bonebrake, 2019). Such range expansion that is at least
partly due to climate change can occur particularly rap-
idly, as shown for the Indian native butterfly Acraea terpsi-

core that has colonized new territories of Southeast Asia
at an estimated rate of 200 km/year over the last 30 years
(Noor et al., 2017).

Amongst the variables involved in expansion, seasonal
warming has increasingly been shown to trigger significant
effects on range shifts in certain insect pollinators through
the expansion of their potential climatic niche. Milder win-
ters, subsequent warmer overwintering conditions, and
warmer months during the emergence of queens, have been
correlated with the rapid westward colonization of the bum-
blebee Bombus haematurus by 20% in about 40 years without
evidence of dietary niche shift (Biella et al., 2020). Similarly,
some heat-adapted carpenter bees (Apidae, Xylocopa) are
expanding their distributions, this expansion being corre-
lated with higher temperature in both winter and summer
(Tripodi & Szalanski, 2011; Vickruck & Richards, 2017;
Banaszak et al., 2019). Possible mechanistic explanations
for these trends might be decreased mortality in a critical
phase of an insect’s life cycle, as warmer winters could act
as a prerequisite for range expansion by increasing larval
survivorship (in butterflies, see Crozier, 2003, 2004) or
queen success in overwintering (in bumblebees, see Biella
et al., 2020). Other life-history variables can also explain
expansion trends, with some butterfly species that do not
overwinter as eggs or unfed neonate larvae, as well as multi-
voltine species, being more prone to show range expansion
(Breed et al., 2012). As a result of milder winters, some bum-
blebee populations have been observed throughout the cold
season feeding on under-exploited flowering plants from
urban parks and gardens (Stelzer et al., 2010). Although
winter-foraging could be seen as a favourable adaptive strat-
egy to avoid interspecific competition with other pollinators,
such changes in phenology might only be physiologically
feasible for pollinators that are able to forage at lower tem-
peratures (e.g. close to 0�C), such as bumblebees
(Heinrich, 1979). In species that are already multivoltine
however, warmer temperatures during larval development
are expected to lead to an additional generation(s) each year
(Kiritani, 2006; Gomi et al., 2007). Since 1980 in Europe, a
significant proportion of multivoltine butterfly species
showed increased frequency of second and subsequent
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generations, and others even augmented the overall number
of generations (Altermatt, 2010).

In Europe and North America, both range shifts and
range expansions have only been shown in a minority of
the predominantly cold-adapted bumblebees (Apidae,
Bombus) (Kerr et al., 2015; Martinet et al., 2015; Rasmont
et al., 2015), while many other members of the genus are
regressing (Cameron & Sadd, 2020). A recent study supports
the hypothesis that climate (in conjunction with land-use
change and floral availability) has driven an elevation shift
in both bumblebees and plants in the mountains of south-
western Europe (Marshall et al., 2020). The observed concur-
rent changes were however asymmetrical, with plants having
shifted on average 100 m higher than bumblebees.
High-elevation habitats are expected to become critically
important for cold-adapted pollinators, as they can act as
cold-temperature refugia from habitats that may no longer
exist at lower elevations (Rasmont et al., 2015; Penado,
Rebelo & Goulson, 2016). In other species of bumblebees,
expansion with retention of the original range (e.g. Bombus
haematurus, B. schrencki) could partly be explained by a greater
inherent adaptation to acute heat stress during extreme

climatic events (i.e. higher critical thermal limit and/or lon-
ger time before heat stupor), as suggested by thermal stresses
applied to bumblebees under laboratory conditions (Zambra
et al., 2020; Martinet et al., 2021a). Higher resistance to heat
stress can ultimately be associated with a higher survival rate
that may allow persistence in areas experiencing an increased
incidence of heat waves (Martinet et al., 2021a). Alternatively,
the observed retention of their original range could be due to
(i) these localities acting as temporary climatic refugia, with
the possibility that these relictual populations will die out fol-
lowing further climatic changes, and (ii) a lack of overall sam-
pling in some parts of their range preventing an accurate
quantification of their actual regression (Rasmont
et al., 2015).
Overall, both gradually increasing average temperatures

and the greater frequency of extreme climatic events constitute
key factors that can benefit species exhibiting key physiological
or ecological traits, such as an inherent adaptation to hotter
areas or resilience to heat waves, involved in reducing mortal-
ity during critical phases of the pollinator life cycle (Table 1).
Although we are not aware of studies explicitly demonstrating
positive effects of change in precipitation on the expansion of

Table 1. Traits associated with range expansion in pollinators and context in which the trait is beneficial

Candidate winning trait Context in which the trait is efficient References

Global warming
Sufficient mobility to:
(i) track colder areas
(ii) follow warming areas

Gradual, localized warming
Green network to reach higher latitudes or
altitudes (i.e. no biotic or abiotic
insurmountable obstacles)

Biella et al. (2020); Martinet et al. (2015); Rasmont
et al. (2015); Kerr et al. (2015); Au & Bonebrake (2019);
Parmesan et al. (1999); Breed, Stichter & Crone (2012);
Pateman et al. (2012); Banaszak, Cibicka &
Twerd (2019); Crozier (2003)

Plasticity to extreme
temperatures

Sudden climatic events, heat waves but with a
moderate duration

Zambra et al. (2020); Martinet et al. (2021a,b); see also
Oyen, Giri & Dillon (2016)

Inherent association with
warmer climates (e.g.
tropical, Mediterranean)

Gradual global temperature rise
Warmer winters

Biella et al. (2020); Martinet et al. (2015); Rasmont
et al. (2015); Au & Bonebrake (2019); Banaszak
et al. (2019); Noor et al. (2017)

Global habitat change
Flexibility in nesting
material
Ability to use human
structures for nesting

Above-ground nesting

Increased anthropic material in ecosystems
Increased frequency of impervious surfaces

Prŷs-Jones, Kristj�ansson & Ólafsson (2016); Prŷs-
Jones (2019); Ballare & Jha (2020); Geslin et al. (2020)

Generalized diet and
resource use
Flexible diet andopportunism
(e.g. nectar robbing)

High metabolic
performance

Landscape homogenization
Increased spatio-temporal plant–pollinator
mismatches

Moerman et al. (2016); Vanderplanck et al. (2014); Braby
et al. (2014)

Specialized diet on
expanding host plants

Host is ornamental
Host is a crop
Host is itself expanding

Halsch et al. (2021); L�opez-Uribe et al. (2016); Ryan
et al. (2019); Betzholtz et al. (2013); Vane-Wright (1993)

Association with open
habitats

Deforestation Noor et al. (2017)

Association with woody
habitats

Increased forested areas Betzholtz et al. (2013)

Larger body size (increased
dispersal ability)

Increase in habitat fragmentation Gérard et al. (2020a); Pöyry et al. (2009); Freedman
et al. (2020)

(Continues)
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pollinators, further research is encouraged to investigate
whether such events could be responsible for shifting success
as a result of physiological adaptation to precipitation regimes.

III. POLLINATORS SURVIVING IN
ANTHROPOGENICALLY MODIFIED HABITATS

(1) Thriving inside and outside cities: impact of
habitat modification on pollinators

Urbanization leads to the creation of novel ecosystems,
including a higher proportion of impervious surfaces, habitat
fragmentation and isolation, and a high percentage of exotic
plants and novel nesting material (Buchholz & Egerer, 2020).
Outside cities, other anthropogenically modified habitats
include the use of pesticides, which can impact mortality
and behaviour (Henry et al., 2012; Woodcock et al., 2016),
fragmentation impacting habitat quality (Senapathi
et al., 2015) or loss of floral and nesting resources for insect
pollinators (Kleijn & Raemakers, 2008). Globally, habitat
destruction and fragmentation, mostly associated with the
intensification of agriculture and the consequent eutrophica-
tion (Carvalheiro et al., 2020), is a leading factor driving the
decline of pollinators (Powney et al., 2019; Duchenne
et al., 2020) and insects in general (Wagner, 2020).

(2) New habitats, new opportunities

While anthropogenically induced land-use and land-cover
change is well known to accelerate rates of extinction in
many taxa (Ellis et al., 2010), it can also create new oppor-
tunities for a subset of species. Depending on the nature of
habitat modification, the identity and composition of the
pollinator communities that will be favoured can vary
strongly. The creation of novel open habitats helped, for

instance, the butterfly Acraea terpsicore expand its range by
7000 km2 across large-scale palm-oil and Acacia planta-
tions across Southeast Asia over a 30-year period (Noor
et al., 2017). By contrast, where forest cover has remained
stable, such as in Northern Europe, forest species show
greater range expansions than species associated with
open habitats (Betzholtz et al., 2013). Similarly in southern
and eastern Europe, where reforestation occurred follow-
ing the abandonment of agricultural lands due to socio-
economic changes (Lasanta et al., 2017), species strongly
associated with woodlands are favoured (Jenič, Gogala &
Grad, 2010).

(3) Dealing with fragmentation

Regardless of habitat modification, fragmentation impacts
the number of suitable patches, their shape complexity,
their isolation, as well as the proportion of edges
(Didham, 2010). The increasing distance between patches
of suitable habitats has been suggested to select for larger
body size in pollinators, because larger body size can imply
higher dispersal capability. In Finland, larger butterflies
have been able to shift further distances than smaller ones
(Pöyry et al., 2009). In a context of large-scale migrations, a
recent analysis revealed that initial monarch (Danaus plexip-
pus) founders presented large and elongated forewings and
were therefore well suited for long-distance movements, in
contrast with populations that ceased migration after
establishment (Freedman et al., 2020). In several
European countries, bumblebee queen body size has
increased over the last century, possibly in response to
increased habitat fragmentation (Gérard et al., 2020a).
This pattern has also been observed spatially, with some
species of solitary bees displaying a larger body size in
more fragmented agricultural landscapes (Warzecha
et al., 2016). Alternatively, highly agricultural landscapes

Table 1. (Cont.)

Candidate winning trait Context in which the trait is efficient References

Human facilitation
Expected high efficiency as a
crop pollinator
Easy to manage (e.g.
eusociality)

Flexibility in phenology

Increasing need for pollination services (e.g.
growing human population, lack of natural
pollination services)

Social species more likely to be chosen for
domestication and exportation

Geslin et al. (2017) and references therein; Aizen
et al. (2020) and references therein; Schweiger
et al. (2010)

Wood nesting, cavity nesting Global trade of wood and other goods by
air/sea

Palletized system of global trade

Cane (2003); Fortel et al. (2016); Okabe et al. (2010) and
references therein; Sheffield, Heron & Musetti (2020)
and references therein

Other facilitating ‘universal’ traits
(can apply when the species has already expanded)

Territoriality and aggression
Competitive advantage for
resources

Poorly competitive natives
Regions lacking these behaviours with a
‘naive’ local fauna

Aizen et al. (2020) and references therein; Geslin
et al. (2017) and references therein

Parthenogenic, polyandrous
reproduction system

Could apply without restriction Magnacca & King (2013)
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can also be associated with lower resource quality and
quantity, two factors that negatively impact body size
(Roulston & Cane, 2002; Gérard et al., 2018). Moreover,
smaller body size can lead to higher overall fitness in these
landscapes as smaller offspring require fewer resources in
absolute terms to reproduce (Renauld et al., 2016).

(4) Nest opportunists

Landscape changes, particularly urbanization, have made
available a completely new array of potential nesting loca-
tions for some insect pollinators. Given the mostly impervi-
ous nature of soils in cities, above-ground nesting
pollinators are more likely to be selected in urban areas. In
Europe, the bumblebee Bombus hypnorum nests in above-
ground cavities, mainly in trees, but frequently takes advan-
tage of human structures such as bird nest boxes, holes in
walls, and roofing tiles (Prŷs-Jones, 2019). This ability, com-
bined with increased forest coverage after 1945 and the
urbanization of Europe after 1900, has probably allowed it
drastically to increase its abundance, range, and density,
including in new countries where it can be the most common
species in urban areas (Prŷs-Jones et al., 2016;
BWARS, 2017; Prŷs-Jones, 2019). In North America, the
carpenter bee Xylocopa virginica also benefits from anthropo-
genic modifications of habitats, this large bee nesting almost
exclusively in structures built from milled lumber such as
spruce and pine (Ballare & Jha, 2020). In cities, the increasing
popularity of bee hotels in public parks also provides new
nesting opportunities for bees. These structures have, how-
ever, been shown largely to favour the expansion of exotic
species, as demonstrated in the South of France where the
most common species that emerged from bee hotels was
the invasiveMegachile sculpturalis (Geslin et al., 2020). A similar
pattern has been observed from a survey of almost 600 bee
hotels in Canada, in which introduced bees represented
nearly half of all bees recorded (MacIvor & Packer, 2015).

(5) Host-plant opportunists

Some pollinator expansions can be related to the expansion
of their respective host plants, either because these hosts are
associated with horticultural practices (e.g. domestication of
the host plants as ornamental plants), agricultural practices
(e.g. domestication of the host plants as crops; selection/sup-
port of the wild host plants) and invasion, or because the
hosts are themselves expanding following climate changes.
For example, the Gulf fritillary butterfly (Agraulis vanillae)
has expanded its range in the Western USA in the past
100 years (Shapiro & Manolis, 2007) partly following the
use of its host Passiflora as a popular ornamental garden plant
(Halsch et al., 2021). Specialization on one specific agricul-
tural crop explains range expansion in the North American
squash bee Peponapis pruinosa, a strict pollen specialist of the
plant genus Cucurbita. The bee is currently found far beyond
the distribution of its ancestral wild host (Cucurbita foetidis-

sima), in these areas relying entirely on domesticated

Cucurbita pepo used in commercial and domestic agriculture.
Thanks to this anthropogenic facilitation, P. pruinosa has
attained one of the largest geographical ranges of North
American native bees (L�opez-Uribe et al., 2016). Similarly,
although at a much broader scale, the cabbage white butter-
fly Pieris rapae, an agricultural pest, has undergone a dra-
matic expansion following the global use of brassicaceous
crops on which its larvae feed (e.g. cabbage, canola, bok
choy, turnips). The species is believed to have originated in
Europe and to have started expanding�1200 years ago fol-
lowing the diversification of brassicaceous crops and the
development of human trade routes such as the Silk Road
(Hiura, 1968; Fukano et al., 2012). Over the last 160 years,
P. rapae successfully continued its global invasion through
multiple independent introductions and is now present on
all continents except South America and Antarctica (Ryan
et al., 2019). Another consequence of agricultural expansion
has been increased fertilizer use that has favoured plant spe-
cies associated with nitrogen-rich habitats, a potentially
important driver of range expansion in butterfly species with
a nitrogen-favoured larval diet (Betzholtz et al., 2013). An
index assessing the level at which nitrogen-rich habitats
can impact butterflies has been developed and could be used
to forecast which species could benefit from anthropogenic
habitats (WallisDeVries & van Swaay, 2017). Away from
agriculture, climate-driven expansion of key host plants
partly explains the dramatic northern expansion of the spe-
cialist giant swallowtail butterfly (Papilio cresphontes) by
180 km per decade in North America, an expansion that is
also associated with warmer, wetter climate conditions in
both overwintering and active flight stages of this pollinator
(Wilson et al., 2021).
In general, an inherently broader diet is likely best for facil-

itating species expansion, as the ability to consume a wider
variety of available resources will allow dietary shifts depend-
ing on resource availability (Roger et al., 2017). In Europe,
the large majority of strongly expanding bee species are gen-
eralists, while specialized species are mostly stable or decreas-
ing (Rasmont et al., 2015; Scheper et al., 2015). Among
Australian butterflies, several species have expanded their
ranges since 1970 (Peters, Smithers & Rushworth, 2010)
and a common trait was the ability of the larvae to forage
on non-native larval food plants (Braby et al., 2014). Simi-
larly, Nymphalinae butterflies showing a greater dietary
breadth (i.e. with a more diverse host-plant use) are naturally
more widespread than butterflies with narrower host-plant
use (Slove & Janz, 2011). Whether a broader dietary breadth
is a cause or a consequence of range expansion in such polli-
nators could be contextual. An increasing dietary breadth
could lead to a range expansion if the range of the pollinator
was originally restricted by the range of its host plant (Janz &
Nylin, 2008). Alternatively, if the original range of a species is
constricted by a factor other than diet (e.g. isotherms), a
range expansion caused by an external factor (e.g. a temper-
ature rise) can put the pollinator in contact with novel
resources that could ultimately be used through ecological fit-
ting (Agosta & Klemens, 2008). However, if the inherent
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Fig 1. Visual representation of the factors involved in range expansion in pollinators in the Anthropocene: 1, climate change;
2, anthropogenic transport; 3, reforestation; 4, deforestation; 5, urbanization; 6, pollinator domestication; 7, eutrophication;
8, agricultural intensification; 9, plant invasion. A, carpenter bee moved through wood transport; B, invasive megachilid bee
benefitting from bee hotels; C, butterfly co-expanding with its ornamental host; D, bumblebee nesting in a roof; E, butterfly co-

(Figure legend continues on next page.)
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dietary flexibility of the species is too low, host switching is
unlikely to occur, as dietary shifts generally occur over evolu-
tionary time (Larkin, Neff & Simpson, 2008; Dellicour
et al., 2014).

Regardless of dietary breadth, the introduction of non-
native plants into ecosystems can promote the expansion of
non-native pollinators and vice versa. This phenomenon,
reported as invasive mutualism or alien mutualism, can
strongly erode native pollination networks by modifying the
strength of interactions and distributions of asymmetries to
the advantage of ‘super-generalist’ alien species during inva-
sion (Aizen, Morales &Morales, 2008). The invasive mutual-
ism of non-native honeybees and the exotic yellow star thistle
(Centaurea solstitialis), both introduced to the western USA in
the 1800s, is a key factor that allowed the expansion of both
aliens (Barthell et al., 2001). Similarly, human-driven coloni-
zation by milkweeds (Asclepias spp.) in non-native locations
has aided the dramatic expansion of the highly mobile mon-
arch butterfly across both the Pacific and Atlantic oceans in
the 19th century (Vane-Wright, 1993; Pierce et al., 2014).

Finally, an inherent physiological ability to perform well
on a wide variety of diets or on novel diets is a key factor in
range shifts, as is the case for the globally expanding general-
ist bumblebee species Bombus terrestris (Moerman et al., 2016;
see Section IV.2). More studies investigating and comparing
the metabolic performance of pollinators under stressful con-
ditions (e.g. heat stress; Tomlinson et al., 2015) could provide
key insights into the mechanisms allowing expanding species
to arrive and establish in new areas. In contrast to bees, the
majority of butterfly species are generally much more tightly
bound to specific host plants (Forister et al., 2015), although
instances of host-plant shifts have attracted much recent
attention (e.g. Chaturvedi et al., 2018; Singer &
Parmesan, 2019). Given that larval diet in butterflies is
directly related not only to larval performance (Couture, Ser-
bin & Townsend, 2015) but also to forewing characteristics
and flight abilities in adults (Johnson et al., 2014; Reim
et al., 2019), subsequent impacts are expected on adult migra-
tion, especially in a context of climate warming (Soule,
Decker & Hunter, 2020).

IV. POLLINATORS BENEFITING FROM HUMAN
INTRODUCTION

(1) Expansion and invasion in human-introduced
pollinators

Human introductions of pollinating insects can be deliberate
(e.g. domestication followed by intentional introduction to

new areas), although most are accidental and caused by the
international transport of goods (Russo, 2016). This intro-
duction of non-native pollinator species to new geographical
areas can subsequently lead to their establishment (Braby
et al., 2014) and therefore expansion from their original
range. This phenomenon is mostly observed on islands where
non-native pollinators can become the most abundant polli-
nator species, but invasions can also occur on the mainland
(Russo, 2016). At the global scale, introduction of managed
pollinators to improve pollination services has predomi-
nantly involved bees. The two most abundant and wide-
spread introduced bee species are the buff-tailed
bumblebee (Bombus terrestris) (see Section IV.2) and the West-
ern honey bee, Apis mellifera, both eusocial species
(Goulson, 2003; Garibaldi et al., 2013; Kleijn et al., 2015).
With the notable exception of Megachile rotundata (Pitts-
Singer &Cane, 2011), solitary bees have been introduced less
extensively (e.g. the megachilid Osmia ribifloris for blueberry
pollination from the west to the east coast of the USA, or
the halictid Nomia melanderi for alfalfa pollination from North
America to New Zealand) (Stubbs, Drummond &
Osgood, 1994; Howlett & Donovan, 2010). Overall, most
human-introduced pollinators are found within two families,
Megachilidae (33 non-native species) and Apidae (30 non-
native species) (Russo, 2016).
Some species are seen as ‘tramp’ species, meaning they

are particularly prone to anthropogenic dispersal due to
inherent combinations of traits that appear beneficial in
particular contexts. Of the 30 non-native bee species that
have established themselves in North America
(Cane, 2003; Gibbs & Sheffield, 2009), most share two
key traits: they are cavity-nesters and non-parasitic. While
the former trait can directly facilitate establishment in
exotic species (see example of Megachile sculpturalis in
Section III.4), the latter is mainly due to non-parasitic pol-
linators having the advantage of not depending on a host
for survival. Noticeable examples of species in which
cavity-nesting is an advantage for range expansions
include carpenter bees (Xylocopa), a genus of wood-nesting
species that are commonly found outside their original
ranges accompanying the global trade of wood
(e.g. Okabe et al., 2010). Short travel times of driftwood
logs in oceans could also promote short-distance dispersal
in these wood-nesting bees (Sheffield et al., 2020).
Reproductive strategy can also be an important factor

associated with expansion, as proposed for Ceratina dentipes,
a bee originating from Southeast Asia and now rapidly
spreading across Hawaii and the South Pacific (Groom
et al., 2017; Shell & Rehan, 2019). Because to date only
females have been caught in Hawaii, the species is thought

(Figure legend continued from previous page.)
expanding with nitrophilous host; F, squash bee co-expanding with crop host; G, bumblebee benefitting from domestication. Blue
outlines correspond to climate change and anthropogenic transport, orange outlines to novel anthropogenic habitats and green
outlines to agricultural intensification and its consequences. Illustrator: Morgane Goyens.
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to be capable of parthenogenic reproduction, a trait that
could help facilitate invasion, as a population could be
founded by a single mated female (Magnacca &
King, 2013). Another way populations can be buffered
against the challenge of colonizing new environments is
through female multiple mating or polyandry, which can
facilitate colonization by protecting against inbreeding,
reducing the costs of mating with infertile or incompatible
males (Lewis et al., 2020).

Several other behavioural and morphological characteris-
tics are likely to facilitate expansion in human-introduced
pollinators, such as the aggressive territorial behaviour dis-
played by the males of Anthidium manicatum, a species native
to Europe and northern Africa now established in Asia,
North America, South America, New Zealand and the
Azores (e.g. Strange et al., 2011; Soper & Beggs, 2013). A
major consequence of this aggressive behavior (Colla, 2016)
is the exclusion of native bumble bees from floral resources
in invaded sites (Graham et al., 2019). In the Caribbean,
aggressive Africanized honeybees fully replaced the
European honeybee, followed by subsequent loss of aggres-
sive behaviour (Rivera-Marchand, Oskay & Giray, 2012;
Ackerman, 2021). Finally, aggressive behaviour could have
acted as a facilitating trait for the spread of the Asian-native
beeMegachile sculpturalis in both the USA and Europe, notably
through evictions of native species and subsequent occupa-
tion of their nests (Roulston & Malfi, 2012; Le Feon
et al., 2018; Geslin et al., 2020). Among other factors, this
rapid expansion may be due to both its polylectic diet and
its ability to nest in a wide range of cavities (see
Section III.4), facilitating survival in a wide variety of habitats
(Fortel et al., 2016). Wasp pollinators in Vespidae have also
frequently been mistakenly introduced into new areas, with
some species becoming invasive and threatening native spe-
cies (Beggs et al., 2011). Their success is likely due tomore effi-
cient social and foraging behaviours, a generalist predatory
lifestyle, and their aggression (Gamboa, Greig &
Thom, 2002; Armstrong & Stamp, 2003).

Records of invasions following human introduction in
other pollinators such as butterflies and hoverflies seem
less common. For instance, while more than 10 exotic but-
terfly species have been introduced to Australia, only three
have become established (Braby et al., 2014). Finally,
although many hoverfly species have also been actively
introduced globally for pest management, this family is
far less studied and no examples are readily available
(Hardy, 1964).

(2) Case study of a winner: the worldwide success
story of the recently domesticated buff-tailed
bumblebee

One of the most famous cases of a pollinator expanding its
range due to human facilitation is the bumblebee Bombus ter-
restris. Since the late 1980s, this species, native to the western
Palaearctic, has been exported across the globe for pollina-
tion of greenhouse crops, particularly tomatoes (Velthuis &

Van Doorn, 2006). However, the species rapidly showed
invasive characteristics and now raises major conservation
concerns where it has been imported (Geslin &
Morales, 2015; Aizen et al., 2020; Cameron & Sadd, 2020).

The global success of B. terrestris can be explained by an
array of ecological and physiological features that make it
highly adaptable, facilitating its survival and reproduction
in a wide variety of habitats. First, B. terrestris has a large
and highly flexible diet (Rasmont et al., 2008; Boustani
et al., 2020), even in areas outside its native range where it
is able to use indigenous plants (Hingston et al., 2002;
Goulson, 2003). It demonstrates the ability to rob nectar
from plants, allowing (i) carbohydrate intake without the
need to expend energy and time in handling flowers with
complex morphologies (as suggested in A. mellifera; Dedej &
Delaplane, 2005), and (ii) consumption of nectar from plants
with nectaries otherwise inaccessible to its short tongue. This
ability has been observed outside of its native range and is
reported to decrease nectar availability for other pollinators
(S�aez et al., 2017). Under laboratory conditions, this species
produces larger pupae than other bumblebees even on
resources of lower quality (Vanderplanck et al., 2014; Moer-
man et al., 2016). They also have some degree of tolerance
to pathogens that may have spilled over from this species det-
rimentally to infect native bees not previously exposed to
these pathogens in areas of introduction (Arbetman
et al., 2013).

In addition to these characteristics, B. terrestris copes well
with a variable climate. The species shows a high tolerance
to a sudden and lasting hyperthermic stress, the major conse-
quence of heat waves (Zambra et al., 2020; Martinet
et al., 2021a) and has also been able to expand its range dur-
ing recent increases in annual mean temperature (Martinet
et al., 2015). In addition to its physiological resilience to cli-
mate and diet, B. terrestris is a comparatively early-emerging
bee, enabling it to benefit from spring resources to found
a nest and initiate its colony before its competitors. Unlike
most declining bumblebee species, its phenology is bivol-
tine (i.e. with two generations per year) or even winter
active in suitable locations, allowing it to benefit from a
larger array of floral resources throughout the year
(Stelzer et al., 2010). Consequently, social generalist bees
with broad diets such as B. terrestris (but also A. mellifera)
may suffer less from both temporal and spatial mismatches
than solitary, univoltine and specialized bees which are
generally restricted to narrower activity periods in which
the host plants are available (Schweiger et al., 2010). In
addition, the large number of workers in social bee species
optimizes egg production and food intake, contrasting
with the lifestyle of solitary bee species (Stevens, Hogen-
doorn & Schwarz, 2007).

With its combination of climatic tolerance, dietary flexibil-
ity, and strong dispersal ability, coupled with advantageous
life-history traits such as a long phenology and sociality, Bom-
bus terrestris provides key insights into our understanding of
‘winning traits’ for a pollinator in the context of global
change.
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V. CONSEQUENCES OF RANGE EXPANSION ON
NATIVE ECOSYSTEMS

(1) Competition with native pollinators

There is surprisingly little evidence for competition between
native species and expanding non-managed species for floral
and nesting resources, although some cases have been
reported (e.g. Portman, Tepedino & Tripodi, 2019). Many
cases of expansions concern pollinators using resources
with very low levels of competition, an element that could
facilitate the expansion of such species. Documented
examples of competition for nesting resources between
non-managed exotic and native bees include the wood-
nesting exotic bee Lithurgus chrysurus and the native Mega-

chile spp. in North America (Rust et al., 2004), and
M. sculpturalis (see Section III.4).

On the other hand, competition between native species
and massively introduced managed species (MIMS) has
raised much interest, notably when MIMS integrate into
native plant–pollinator networks (Geslin et al., 2017). During
recent decades, the use of MIMS has becomemore prevalent
following the increased dependency of agriculture on
managed insect pollination in ecosystems (Aizen et al., 2008;
Lautenbach et al., 2012). The main consequence of the
introduction of MIMS seems to be exploitative competition
for floral resources (Stout & Morales, 2009; but see Nishi-
kawa et al., 2019; Iwasaki et al., 2018). Such an overlap can
trigger a cascade of effects on wild pollinators including a
decrease in fitness (Elbgami et al., 2014), in visitation
frequency to specific plants (Shavit, Dafni & Ne’eman, 2009),
and in shifts towards alternative plants (Walther-Hellwig
et al., 2006). In addition to potential spatio-temporal overlaps
in floral choices, competition and exclusion of native pollina-
tors from nest sites by introduced MIMS have been increas-
ingly suggested as significant impacts, notably in
bumblebees (Matsumura, Yokoyama & Washitani, 2004;
Inoue, Yokoyama & Washitani, 2008; Inoue &
Yokoyama, 2010).

(2) Co-expansion with exotic host plants

Introduction of non-native pollinator species may promote
the spread or co-expansion of non-native plant species as
the introduced bees could mainly forage on exotic flowers,
potentially increasing their seed set and therefore fitness
(Stout, Kells & Goulson, 2002; Morales & Aizen, 2006).
For example, more than 80% of plants visited by the invasive
Anthidium manicatum in New Zealand are exotic species
(Lamiaceae and Plantaginaceae), although it also visits native
plants (Soper & Beggs, 2013). Such non-native mutualisms
can lead to the formation of ‘invasion complexes’, in which
non-native pollinators disproportionally visit non-native
plants for their resources, thereby promoting their reproduc-
tion (Morales & Aizen, 2002, 2006). However, range expan-
sion into anthropogenic habitats could also potentially rescue

native plant species when wild native pollinators are scarce
(Sanguinetti & Singer, 2014).

(3) Transmission of diseases and pathogens

Invader species can displace the resident fauna if they are tol-
erant to diseases that they vector, and that have detrimental
effects on native species (Holt & Bonsall, 2017). Transmission
of pathogens is increasingly discussed in the context of global
expansion of managed insect pollinators, with growing evi-
dence showing that they can be transmitted to wild species
(Gisder & Genersch, 2017). Again, the most documented
examples come from the intensely managed bumblebees.
Data also show that non-native solitary bee species can trans-
mit parasites to closely related indigenous species
(Bosch, 1992; McKinney & Park, 2013; Hedtke et al., 2015)
and such pathogen transmissions may result in distribution
shifts in native species. In Sweden, the northward expansion
of the butterfly Araschnia levana has induced shifts in resident
species distributions, with a possible explanation being
parasitoid-driven competition generating significant mortal-
ity in the native species (Audusseau et al., 2017, 2020).
Honeybees and more recently bumblebees have been

intensely domesticated for the purposes of crop pollination, to
such an extent that hundreds of thousands of colonies are now
moved across countries on an annual basis. In particular, the
recent globalization in the commercial use of bumblebees has
caused a huge expansion of their range, raising concerns due
to suspected impacts on the pathogenosphere of indigenous spe-
cies. Growing evidence shows that parasite transmission by
these anthropogenically expanding species, i.e. managed spe-
cies, could be correlated with the decline of native species
(Cameron et al., 2011). Evidence supports the hypothesis that
pathogen spillover to native communities occurs in the proxim-
ity of greenhouses in which commercial colonies are installed
(Graystock, Goulson & Hughes, 2014). In practice, a large
number of foragers escape from greenhouses and share floral
resources with wild indigenous bees, with the potential for trans-
mission of pathogens to wild populations via contact with
flowers (Colla et al., 2006). At the continental scale, there is
growing evidence that European bumblebee colonies have car-
ried at least two pathogens (Apicystis bombi and Crithidia bombi) to
the Americas and parts of Asia (Cameron & Sadd, 2020).
European strains of parasites have been found in Eastern Asia,
highlighting the massive parasite migration that has accompa-
nied the expansion of commercialized bumblebees globally
(Goka, Okabe & Yoneda, 2006). The case of South America
is particularly alarming, since the timing of the geographic
expansion of domesticated B. terrestris appears to be congruent
with the decline of the endemic Patagonian Bombus dahlbomii,
which is now known to host at least one of the invader’s patho-
gens (Arbetman et al., 2013).
Domesticated pollinators can therefore facilitate the

spread of non-native diseases to wild populations, triggering
epidemics that could eventually affect both community struc-
ture and pollination services. Much work is still required to
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understand fully the consequences of the global pollinator
trade on pathogen prevalence and its consequences on wild
pollinator faunas (Aizen et al., 2020).

(4) Impacting crop yield

Non-native pollinators such as honey bees that outcompete
native species, have been found to be less-efficient pollinators
that can result in poorer fruit set and quality than pollination
by native bees for some crop plants (see Winfree et al., 2007;
Garibaldi et al., 2013). In extreme cases of invasion (e.g. by
MIMS), a high abundance of non-native pollinators can
translate into excessively frequent pollinator visits per flower,
exacerbating costs to the plant (e.g. nectar robbing or flower
damage; S�aez et al., 2018). An oversaturation of pollination
services, although not strictly limited to contexts in which
exotic pollinators are present, is increasingly recognized as
detrimental for fruit production and may even diminish
yields of pollinator-dependent crops (reviewed in Aizen
et al., 2020). Apart from harmful effects of pollinators on
plants during visits or during the pollination process itself,
the global expansion of crop pests also negatively impacts
crop yields, such as the butterfly Pieris rapae

(McKinlay, 1992; Ryan et al., 2019).

(5) Mating with native taxa

In addition to range expansions perturbing community inter-
actions, introduced species can also impact local populations
by creating novel points of contact among closely related spe-
cies that were previously geographically isolated. When close
relatives interact, introgression may occur (Bartomeus
et al., 2020; Cejas et al., 2020). This can challenge the integrity
of species, potentially threatening rare species (Rhymer &
Simberloff, 1996), subspecies distinctions (Lecocq
et al., 2016), and species’ fitness (Barton & Hewitt, 1989).
Commercial introduction of the European bumble bee
B. terrestris to Japan has led to reports of high levels of mating
with the closely related endemic species B. hypocrita, resulting
in reduced fertility (Kanbe et al., 2008; Tsuchida et al., 2019),
and introduction of the eastern North American species
B. impatiens into the range of its sister species in Mexico
(B. ephippiatus) has raised similar concerns (Duennes
et al., 2017). Similarly, increased overlap of range limits of
swallowtail butterflies Papilio glaucus and P. canadensis as a
result of range expansions with climate change are thought
to have generated hybrids with differing phenology and
potentially host use (Mercader, Aardema & Scriber, 2009).
Introgression also can lead to selective transfer of advanta-
geous alleles between resident and introduced lineages that
can enhance the ability of an introduced species to survive
in its environment, enabling it to expand its range further.
Such adaptive introgression has been demonstrated in
mimetic neotropical Heliconius butterflies. Study of loci driv-
ing wing patterns has revealed that some of these butterfly
species have acquired their mimetic phenotypes through
introgression with other mimetic species (Dasmahapatra

et al., 2012; Kronforst, 2012). Once alleles for these color
patterns were transferred to the new species, they became
immediately adaptive, enabling the species to expand into
new mimicry zones. Through similar processes, as alleles
are shared among related pollinators as a consequence of
range expansion, adaptive alleles may be transferred both
within and across species that facilitate improved fitness in
their newly occupied ranges, thus leading to further range
expansion (Pfennig, Kelly & Pierce, 2016).

Overall, a substantial range of effects can be expected on
native plant–pollinator systems following the expansion of
insect pollinators. Two major issues must, however, be
clearly separated: MIMS and non-managed pollinators. This
separation is crucial because regulatory authorities have
much more control on the former, and are responsible for
the uncontrolled invasions that have occurred where regula-
tions have been lacking (Aizen et al., 2020; Bartomeus
et al., 2020). Although a few facilitative interactive effects of
MIMS have been suggested (namely a spillover of shared
plant resources and transfer of social information to optimize
foraging, see Geslin et al., 2017), these cases are not likely to
compensate for the ecological disruptions caused by MIMS.
The second case of expansion (non-managed pollinators) is
much more difficult to control as it results from a combina-
tion of biotic (e.g. species traits) and abiotic (e.g. climate
change) conditions that are much harder to predict (Fig. 1,
Table 1). In this particular case, the role of governments pre-
dominantly lies in controlling and mitigating the anthropo-
genic factors that mostly cause the expansions, namely
global warming and habitat destruction.

VI. CONCLUSIONS

(1) While much has been written in recent decades about
the threats and ecological traits associated with global
biodiversity declines, the scientific literature contains
significantly fewer syntheses focused on the character-
istics of expanding species. Here, we reviewed the traits
(Table 1) and factors (Fig. 1) that have facilitated the
expansions of a fraction of the pollinating entomo-
fauna, allowing this group to take advantage of what
are generally deleterious global environmental
changes.

(2) Although the characteristics allowing species to
expand are mostly taxon specific and context depen-
dent, various traits including high mobility, high resis-
tance to acute heat stress, and inherent adaptations to
warmer climates appear to be important in allowing
pollinators to persist and even expand in the face of cli-
mate change. Similarly, an overall level of flexibility
regarding resource requirements is common in
expanding species, although dietary niche specializa-
tion can also be involved in range expansion under
specific contexts.
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(3) Importantly, expansion of wild and domesticated spe-
cies can show diverse impacts on indigenous wildlife,
including resource competition, co-expansion with
exotic plants, pathogen spread, detrimental impacts
on crop yield, and hybridization with indigenous
wildlife.

(4) The context-dependent nature of each of these success
stories renders generalizations towards ultimate candi-
date ‘winning traits’ complicated. Similarly, the conse-
quences of these expansions appear hard to predict
and to disentangle from confounding biotic or abiotic
disruptions.

(5) There has been no global evaluation of how the com-
bined patterns of decline and expansion of pollinators
will affect our ecosystems and food security in the near
future. What is clear however is that our current reli-
ance on massively introduced pollinators is far from
sustainable and must be considered a serious issue for
the conservation of global ecosystems.

(6) Further standardized work gathering quantitative data
to reveal the rates and magnitude of range shifts is
strongly encouraged to investigate the spatial and tem-
poral aspects of expansions. In addition, further work
investigating specific traits such as species fecundity
and individual mobility are needed to understand pop-
ulation shifts better across space and time.

(7) Continuously monitoring populations and identifying
the relative contributions of both traits and factors
involved with increases in range size and abundance
remain crucial aspects of our understanding of how
species react to environmental changes globally. Most
importantly, these efforts need to be made at a much
larger geographic scale than is presently the case, given
that our global knowledge on insect conservation is
derived predominantly from Europe and North
America.

(8) Considering patterns of both decline and expansion is
fundamental to assess accurately current biodiversity
changes at a global level. The present review under-
lines the importance for ecologists to understand how
wildlife reacts to global changes, and we hope it will
encourage future work on our understanding of pat-
terns of species expansions worldwide.
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